Python在多个Excel文件中找出缺失数据行数多的文件

本文介绍基于Python 语言,针对一个文件夹 下大量的Excel 表格文件,基于其中每一个文件 内、某一列数据 的特征,对其加以筛选,并将符合要求不符合要求 的文件分别复制到另外两个新的文件夹 中的方法。

首先,我们来明确一下本文的具体需求。现有一个文件夹,其中有大量的Excel 表格文件(在本文中我们就以csv格式的文件为例);如下图所示。

image

其中,每一个Excel 表格文件都有着如下图所示的数据格式。

Python在多个Excel文件中找出缺失数据行数多的文件

如上图所示,各个文件都有着这样的问题——有些行的数据是无误的,而有些行,除了第一列,其他列都是0值。因此,我们希望就以第2列为标准,找出含有0值数量低于或高于某一阈值 的表格文件——其中,0值数量多,肯定不利于我们的分析,我们将其放入一个新的文件夹;而0值数量少的,我们才可以对这一表格文件加以后续的分析,我们就将其放入另一个新的文件夹中。因此,计算出每一个表格文件对应的的0值数量百分比后,我们就进一步将这一Excel 表格文件复制到对应的文件夹内。

知道了需求,我们就可以开始代码的撰写。其中,本文用到的代码如下所示。

```python
# -*- coding: utf-8 -*-
"""
Created on Tue May 16 20:19:50 2023

@author: fkxxgis
"""

import os
import shutil
import pandas as pd

def filter_copy_files(original_path, useful_path, useless_path, threshold):
    original_all_file = os.listdir(original_path)
    for file in original_all_file:
        path = os.path.join(original_path, file)
        if file.endswith(".csv") and os.path.isfile(path):
            df = pd.read_csv(path)
            column_value = df.iloc[:, 1]
            zero_count = (column_value == 0).sum()
            zero_ratio = zero_count / len(column_value)

            if zero_ratio < threshold:
                new_path = os.path.join(useful_path, file)
                shutil.copy(path, new_path)
            else:
                new_path = os.path.join(useless_path, file)
                shutil.copy(path, new_path)

filter_copy_files("E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/13_AllYearAverage",
                  "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/14_PointSelection/LowMissingRate",
                  "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/14_PointSelection/HighMissingRate",
                  0.30)
```

其中,上述代码是一个筛选并复制文件的函数。该函数的目的是根据给定的阈值将具有不同缺失率的文件从一个文件夹复制到另外两个文件夹。

在代码中,filter_copy_files函数接受四个参数:

  • original_path:原始文件夹的路径,其中包含要筛选的.csv文件。
  • useful_path:有用文件的目标文件夹路径,将满足阈值要求(也就是0值数量低于阈值)的文件复制到此处。
  • useless_path:无用文件的目标文件夹路径,将不满足阈值要求(也就是0值数量高于阈值)的文件复制到此处。
  • threshold:阈值,用于确定文件的缺失率是否满足要求。

函数首先使用os.listdir获取原始文件夹中的所有文件名,然后遍历每个文件名。对于以.csv结尾且为文件的文件,函数使用pd.read_csv读取.csv文件,并通过df.iloc[:, 1]获取第2列的值。

接下来,函数计算第2列中为零的元素数量,并通过将其除以列的总长度来计算缺失率。根据阈值判断缺失率是否满足要求。

如果缺失率小于阈值,函数将文件复制到useful_path目标文件夹中,使用shutil.copy函数实现复制操作。否则,函数将文件复制到useless_path文件夹中。

最后,我们调用了filter_copy_files函数,并传递了相应的参数来执行文件筛选和复制操作。

运行上述代码,我们即可在对应的文件夹中看到文件。如下图所示,0值数量低于阈值的表格文件都复制到了这个LowMissingRate文件夹中,我们即可对其加以后续处理;而那些0值数量高于阈值的表格文件,就放到另一个HighMissingRate文件夹中了。

Python在多个Excel文件中找出缺失数据行数多的文件

至此,大功告成。

文章整理自互联网,只做测试使用。发布者:Lomu,转转请注明出处:https://www.it1024doc.com/6195.html

(0)
LomuLomu
上一篇 2025 年 1 月 13 日 下午12:48
下一篇 2025 年 1 月 13 日 下午1:49

相关推荐

  • 什么是南北向流量和东西向流量?

    在云计算和微服务架构中,南北向流量和东西向流量是两种常见的流量模式。 南北向流量(North-South Traffic) 定义:南北向流量指的是从外部进入系统内部或从系统内部出去的流量,通常是客户端到服务器之间的通信,例如用户通过浏览器或移动应用访问 Web 服务或 API。 特点:这种流量穿过系统的边界,如从外部网络进入内部网络,或者反过来。它通常受到安…

    未分类 2024 年 12 月 31 日
    12500
  • PostgreSQL 数据库的启动与停止管理

    title: PostgreSQL 数据库的启动与停止管理date: 2024/12/28updated: 2024/12/28author: cmdragon excerpt:作为一个强大的开源关系数据库管理系统,PostgreSQL在众多应用场景中发挥着关键作用。在实际使用过程中,对于数据库的启动和停止操作至关重要。这不仅关系到数据库的正常运行,也直接影…

    2025 年 1 月 1 日
    10400
  • 『玩转Streamlit』–查看K线的小工具

    在金融市场分析中,查看不同交易对的 K 线数据是一项基础且重要的工作。 今天,我们就来学习如何使用 Streamlit 构建一个简单的 K 线查看小工具,让你能够方便地查看不同交易对在不同时间范围内的 K 线数据。 1. 环境准备 首先,确保已经安装了必要的库。 除了 Streamlit 用于构建界面,还需要pandas 用于数据处理,plotly 用于绘制…

    2025 年 1 月 14 日
    10700
  • 【一步一步了解Java系列】:探索Java基本类型转换的秘密

    > **当你读到这段文字时,意味着我们都在为梦想而奋斗~** > > **坚持就是胜利,陌生人~** > > **** > > **![](https://pic.it1024doc.com/csdn/202412/1be0a8fd89cd9b19dd76e83814eb3754.jpeg)** > > **个人主页:[Gu Gu Study](https:…

    2024 年 12 月 27 日
    12900
  • 华为OD机试E卷 –游戏分组–24年OD统一考试(Java & JS & Python & C & C++)

    文章目录 题目描述 输入描述 输出描述 用例 题目解析 Js算法源码 python算法源码 java算法源码 c++算法源码 c算法源码 题目描述 部门准备举办一场王者荣耀表演赛,有 10 名游戏爱好者参与,分为两队,每队 5 人。每位参与者都有一个评分,代表着他的游戏水平。为了表演赛尽可能精彩,我们需要把 10 名参赛者分为示例尽量相近的两队。一队的实力可…

    未分类 2025 年 1 月 5 日
    14200

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信