Java 之生产者和消费者模式详解

1. 生产者和消费者模式概述

生产者和消费者模式是一种经典的并发设计模式,用于解决生产者和消费者之间数据共享问题。它主要涉及三个角色:

  • 生产者 (Producer) :负责生产数据,例如将数据写入文件、读取数据库数据等。

  • 消费者 (Consumer) :负责消费数据,例如将数据从文件中读取出来、对数据进行处理等。

  • 缓冲区 (Buffer) :用于存放生产者生产的数据,消费者可以从缓冲区中获取数据。

2. 生产者和消费者案例

案例描述:模拟一个仓库管理系统,生产者负责生产商品,消费者负责消费商品。

代码示例:

```java
// 商品类
class Product {
    private String name;
    private int count;

    public Product(String name, int count) {
        this.name = name;
        this.count = count;
    }

    public String getName() {
        return name;
    }

    public int getCount() {
        return count;
    }
}

// 生产者
class Producer implements Runnable {
    private final List buffer; // 缓冲区
    private final int capacity; // 缓冲区容量

    public Producer(List buffer, int capacity) {
        this.buffer = buffer;
        this.capacity = capacity;
    }

    @Override
    public void run() {
        while (true) {
            // 生产商品
            Product product = new Product("商品", 10);
            // 等待缓冲区有空位
            synchronized (buffer) { // 使用同步块保证线程安全
                while (buffer.size() == capacity) {
                    try {
                        buffer.wait(); // 等待缓冲区有空位
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                // 生产商品入库
                buffer.add(product);
                System.out.println("生产者生产了商品:" + product.getName() + ", 库存数量:" + product.getCount());
                buffer.notifyAll(); // 唤醒所有等待的消费者线程
            }
            try {
                Thread.sleep(1000); // 模拟生产时间
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

// 消费者
class Consumer implements Runnable {
    private final List buffer; // 缓冲区

    public Consumer(List buffer) {
        this.buffer = buffer;
    }

    @Override
    public void run() {
        while (true) {
            // 等待缓冲区有商品
            synchronized (buffer) { // 使用同步块保证线程安全
                while (buffer.isEmpty()) {
                    try {
                        buffer.wait(); // 等待缓冲区有商品
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                // 消费商品
                Product product = buffer.remove(0);
                System.out.println("消费者消费了商品:" + product.getName() + ", 库存数量:" + product.getCount());
                buffer.notifyAll(); // 唤醒所有等待的生产者线程
            }
            try {
                Thread.sleep(1000); // 模拟消费时间
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

public class ProducerConsumer {
    public static void main(String[] args) {
        // 初始化缓冲区
        List buffer = new ArrayList<>();
        // 设置缓冲区容量
        int capacity = 5;
        // 创建生产者和消费者线程
        Producer producer = new Producer(buffer, capacity);
        Consumer consumer = new Consumer(buffer);
        // 启动线程
        new Thread(producer).start();
        new Thread(consumer).start();
    }
}
```

解释:

  • synchronized 块: synchronized 块用于保证线程安全,确保同一时刻只有一个线程可以访问共享资源 buffer。

  • wait() 方法: 当生产者发现缓冲区已满,或消费者发现缓冲区为空时,它们会调用 wait() 方法进入等待状态。 进入等待状态的线程会释放锁,允许其他线程访问共享资源。

  • notifyAll() 方法: 当生产者生产完商品,或消费者消费完商品后,它们会调用 notifyAll() 方法唤醒所有在 buffer 上等待的线程。 唤醒后,等待线程会尝试再次获取锁,并继续执行。

3. 生产者和消费者案例优化

问题: 上面的案例中,生产者和消费者都使用了 wait()notifyAll() 方法进行同步,可能会导致虚假唤醒问题。 当线程被 notifyAll() 唤醒后,它并不能保证唤醒的原因是缓冲区状态发生了变化。

解决方案:使用条件变量来解决虚假唤醒问题。 条件变量允许线程等待特定条件的满足,避免了虚假唤醒问题。

代码示例:

```java
// 生产者
class Producer {
    private final List buffer; // 缓冲区
    private final int capacity; // 缓冲区容量
    private final Condition notFull; // 缓冲区未满条件
    private final Condition notEmpty; // 缓冲区非空条件

    public Producer(List buffer, int capacity, Condition notFull, Condition notEmpty) {
        this.buffer = buffer;
        this.capacity = capacity;
        this.notFull = notFull;
        this.notEmpty = notEmpty;
    }

    public void produce() {
        // 生产商品
        Product product = new Product("商品", 10);
        // 等待缓冲区有空位
        synchronized (buffer) { // 使用同步块保证线程安全
            while (buffer.size() == capacity) {
                try {
                    notFull.await(); // 等待缓冲区有空位
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            // 生产商品入库
            buffer.add(product);
            System.out.println("生产者生产了商品:" + product.getName() + ", 库存数量:" + product.getCount());
            notEmpty.signalAll(); // 唤醒所有等待的消费者线程
        }
    }
}

// 消费者
class Consumer {
    private final List buffer; // 缓冲区
    private final Condition notFull; // 缓冲区未满条件
    private final Condition notEmpty; // 缓冲区非空条件

    public Consumer(List buffer, Condition notFull, Condition notEmpty) {
        this.buffer = buffer;
        this.notFull = notFull;
        this.notEmpty = notEmpty;
    }

    public void consume() {
        // 等待缓冲区有商品
        synchronized (buffer) { // 使用同步块保证线程安全
            while (buffer.isEmpty()) {
                try {
                    notEmpty.await(); // 等待缓冲区有商品
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            // 消费商品
            Product product = buffer.remove(0);
            System.out.println("消费者消费了商品:" + product.getName() + ", 库存数量:" + product.getCount());
            notFull.signalAll(); // 唤醒所有等待的生产者线程
        }
    }
}

public class ProducerConsumerOptimized {
    public static void main(String[] args) {
        // 初始化缓冲区
        List buffer = new ArrayList<>();
        // 设置缓冲区容量
        int capacity = 5;
        // 创建锁
        Lock lock = new ReentrantLock();
        // 创建条件变量
        Condition notFull = lock.newCondition();
        Condition notEmpty = lock.newCondition();
        // 创建生产者和消费者线程
        Producer producer = new Producer(buffer, capacity, notFull, notEmpty);
        Consumer consumer = new Consumer(buffer, notFull, notEmpty);
        // 启动线程
        new Thread(producer::produce).start();
        new Thread(consumer::consume).start();
    }
}
```

解释:

  • ReentrantLock 类: ReentrantLock 类提供了更灵活的锁机制,可以替代传统的 synchronized 块。

  • Condition 类: Condition 类用于创建条件变量,它与 ReentrantLock 关联。 每个条件变量对应一个特定的条件,线程可以通过 await() 方法等待该条件满足,并通过 signalAll() 方法唤醒所有等待该条件的线程。

4. 阻塞队列的基本使用

阻塞队列是一种线程安全的队列,它可以实现生产者和消费者之间的同步。 阻塞队列内部使用锁和条件变量来实现线程安全和等待唤醒机制。

代码示例:

```java
import java.util.concurrent.ArrayBlockingQueue;

public class BlockingQueueExample {
    public static void main(String[] args) {
        // 创建一个容量为 5 的阻塞队列
        ArrayBlockingQueue queue = new ArrayBlockingQueue<>(5);
        // 生产者线程
        new Thread(() -> {
            for (int i = 0; i < 10; i++) {
                try {
                    // 将元素添加到队列
                    queue.put("元素 " + i); // 如果队列已满,则会阻塞直到有空间
                    System.out.println("生产者添加了元素:" + "元素 " + i);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
        // 消费者线程
        new Thread(() -> {
            while (true) {
                try {
                    // 从队列获取元素
                    String element = queue.take(); // 如果队列为空,则会阻塞直到有元素
                    System.out.println("消费者消费了元素:" + element);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
}
```

解释:

  • ArrayBlockingQueue 类: ArrayBlockingQueue 类是一个基于数组实现的阻塞队列,它提供了 put() 和 take() 方法来实现生产者和消费者之间的同步。

  • put() 方法: 如果队列已满,put() 方法会阻塞生产者线程,直到队列中有空位。

  • take() 方法: 如果队列为空,take() 方法会阻塞消费者线程,直到队列中有元素。

5. 阻塞队列实现等待唤醒机制

阻塞队列内部使用锁和条件变量来实现等待唤醒机制,保证线程之间的安全同步。

  • put() 方法 : 当队列已满时,线程会调用 await() 方法,阻塞在条件变量上。当有元素被消费后,消费者会调用 signalAll() 方法,唤醒所有在条件变量上等待的生产者线程。

  • take() 方法 : 当队列为空时,线程会调用 await() 方法,阻塞在条件变量上。当有元素被生产后,生产者会调用 signalAll() 方法,唤醒所有在条件变量上等待的消费者线程。

代码示例:

```java
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

// 生产者
class ProducerBlockingQueue {
    private final BlockingQueue queue; // 阻塞队列

    public ProducerBlockingQueue(BlockingQueue queue) {
        this.queue = queue;
    }

    public void produce() {
        while (true) {
            try {
                // 生产商品
                String product = "商品";
                // 将元素添加到队列
                queue.put(product); // 如果队列已满,则会阻塞生产者线程
                System.out.println("生产者生产了商品:" + product);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

// 消费者
class ConsumerBlockingQueue {
    private final BlockingQueue queue; // 阻塞队列

    public ConsumerBlockingQueue(BlockingQueue queue) {
        this.queue = queue;
    }

    public void consume() {
        while (true) {
            try {
                // 消费商品
                String product = queue.take(); // 如果队列为空,则会阻塞消费者线程
                System.out.println("消费者消费了商品:" + product);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

public class BlockingQueueWaitNotify {
    public static void main(String[] args) {
        // 创建一个阻塞队列
        BlockingQueue queue = new LinkedBlockingQueue<>();
        // 创建生产者和消费者线程
        ProducerBlockingQueue producer = new ProducerBlockingQueue(queue);
        ConsumerBlockingQueue consumer = new ConsumerBlockingQueue(queue);
        // 启动线程
        new Thread(producer::produce).start();
        new Thread(consumer::consume).start();
    }
}
```

解释:

  • LinkedBlockingQueue 类: LinkedBlockingQueue 类是一个基于链表实现的阻塞队列,它提供了 put() 和 take() 方法来实现生产者和消费者之间的同步。

  • put() 方法: 如果队列已满,put() 方法会阻塞生产者线程,直到队列中有空位。

  • take() 方法: 如果队列为空,take() 方法会阻塞消费者线程,直到队列中有元素。

总结:

生产者和消费者模式是一种常用的并发设计模式,它可以有效地解决生产者和消费者之间的数据共享问题。 阻塞队列是实现生产者和消费者模式的便捷工具,它可以简化代码编写,提高代码可读性。 通过使用阻塞队列,我们可以避免使用复杂的同步机制,从而降低开发成本和维护成本。希望对各位看官有所帮助,感谢各位看官的观看,下期见,谢谢~

文章整理自互联网,只做测试使用。发布者:Lomu,转转请注明出处:https://www.it1024doc.com/5278.html

(0)
LomuLomu
上一篇 2025 年 1 月 6 日 上午12:56
下一篇 2025 年 1 月 6 日 上午1:26

相关推荐

  • 2025年蓝桥杯Java B组赛题深度剖析与解题策略

    作为一名连续两年参与蓝桥杯软件类Java B组竞赛的选手,我深刻体会到这项赛事对参赛者算法功底和临场应变能力的全面考验。今年的题目延续了蓝桥杯”夯实基础、鼓励创新”的命题风格,每道试题都像精心设计的思维迷宫,等待着选手用代码这把钥匙来开启。本文将系统梳理本届Java B组的典型赛题,通过全新的视角解析解题思路,分享编程实践中遇到的典型问题及其解决方案。这些内…

    未分类 2025 年 5 月 15 日
    10500
  • 深入解析 Spring AI 系列:以OpenAI与Moonshot案例为例寻找共同点

    今天,我们将重点探讨对接的业务逻辑。为了帮助大家更直观地掌握其中的规律性,我将通过对比OpenAI与《月之暗面》中的Moonshot两个案例来阐述这一点。通过这样的对比,大家可以更清晰地看到,这些对接业务的整体框架其实非常相似。换句话说,我们要做的工作只是其中的一小部分,但它同样是关键的一环。 好了,接下来我们就开始深入了解这个话题。 模型对接 我们首先需要…

    2025 年 1 月 12 日
    27900
  • 扣子又出新功能,支持一键部署小程序,太强了!!

    大家好,我是R哥。 作为一名程序员和技术博主,我一直关注如何使用工具提升生产力,尤其是在内容创作和应用开发领域。 拿我开发一个微信小程序为例,我需要懂前端、后端、运维 等全栈技术,开发流程和技术栈复杂,我还需要购买云服务器、云数据库 等各种基础设施,资源耗费非常多。 虽然现在有如 Cursor 这样的革命性 AI 开发工具,它突破了传统开发模式的壁垒,非开发…

    2025 年 1 月 13 日
    15100
  • JavaScript获取URL参数常见的4种方法

    🚀 个人简介:某大型国企资深软件开发工程师,信息系统项目管理师、CSDN优质创作者、阿里云专家博主,华为云云享专家,分享前端后端相关技术与工作常见问题~ 💟 作 者:码喽的自我修养🥰 📝 专 栏:JavaScript深入研究 🎉 🌈 创作不易,如果能帮助到带大家,欢迎 收藏+关注 哦💕 在前端开发中,处理URL参数是一个常见的任务,尤其是在没有框架支持的情况…

    2025 年 1 月 6 日
    21800
  • Java JDK 下载与版本解析(JDK 8 至 JDK 20)

    什么是 JDK? JDK(Java Development Kit,Java 开发工具包)是甲骨文 Oracle 推出的 Java 开发核心工具套件,包含: Java 运行环境(JRE) :支持运行 Java 程序。 开发工具 :如编译器和调试器,助力高效开发。 基础类库源代码 :提供标准 Java 类的实现。 JDK 的版本发展与选择 自 Java 9 发…

    未分类 2025 年 1 月 6 日
    55300

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信